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ABSTRACT 
The aim of livestock breeding plans is to improve an objective of selection by acting on several 

criteria of selection. The criteria of selection are composed by a subset of traits selected by its easiness of 
measure and its correlation with the objective of selection. In general, traits included on the criteria of 
selection are direct measures of the performance of candidates to selection. From an alternative point of 
view, the Bayesian paradigm allows to model the performance of livestock under a hierarchical Bayesian 
scheme. This approach can use the statistical technique of Data Augmentation, which allows to generate 
“pseudo-phenotypes” to mimic some complex traits. Later on, these “pseudo-phenotypes” may be used 
as new criteria of selection. The description of the procedure is illustrated with several examples of 
animal growth, ranking traits, subjective scores, food efficiency and disease resistance in several 
livestock populations. 
 

BAYESIAN ANALYSIS AND DATA AUGMENTATION 
The main objective of livestock breeding plans is to improve the performance of the livestock 

populations by acting on several criteria of selection. The criteria of selection are composed by a subset 
of traits selected by its easiness of measure and its correlation with the objective of selection. In general, 
traits included on the criteria of selection are direct measures of the performance of candidates to 
selection. Once traits included in the criteria of selection are identified, the Best Linear Unbiased 
Predictior (BLUP) usually obtains predictions of the breeding values after assuming the following linear 
model: 

y =Xb+Zu+ e  
where y is the vector of phenotypic records, X and Z are the incidence matrices that links with systematic 
(b) and additive genetic (u) effects and e is the vector of residuals. 
  Linear models for genetic evaluation can be understood also under the Bayesian paradigm. Then, the 
Bayesian likelihood of data is: 

p y b,u,σ e
2( ) = 1

2πσ e
2( )
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where σ e
2  is the residual variance and xi and zi are the vectors of the incidence matrices for the 

phenotypic record yi. Further, the prior distribution for the additive genetic effects is: 
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where G=Aσ a
2 . In addition, prior distributions for the variance components and systematic effects are 

usually assumed to be uniform within some appropriate bounds. 
Thus, the final inference is achieved by the generation of random samples from the posterior 

distribution of parameters given the data: 

p b,u,σ a
2,σ e

2 y( )  

The usual approach to obtain samples for the joint posterior distribution, and, at the same time, for 
the marginal posterior distributions of the parameters of interest are McMC algorithms, such as the Gibbs 
Sampler. 
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Under the Bayesian approach, the probability structure can be defined by sequential probability 
distributions: 

p(AB C) = p A B( ) p B C( )
 Thus, it is possible to define auxiliary variables that can be augmented under the McMC structure. 

p(y,ω b,u,G,R) = p yω( ) p ω b,u,G,R( )  
where ω is the vector of augmented variables. The usual objective of augmented variables is to 

clarify the inference by the definition of known statistical distributions. However, in some cases, these 
augmented variables may have a biological sense, and, as a consequence, they can be used as criteria of 
selection. The procedure is illustrated with serveral examples. 
 

EXAMPLES 
 

Example 1. Categorical data 
One of the simplest applications of the data augmentation approach is the Bayesian approach of 

the threshold models (Sorensen et al., 1995) for categorical data. Under the probit approach, it is assumed 
the existence of an auxiliary variable or augmented data (ω) called liability. Thus: 

p yω( ) = 1 ωi > 0( )1 yi =1( )+1 ωi ≤ 0( )1 yi = 0( )( )
i=1

n

∏  

Further, the prior distribution for the liability included the usual systematic and breeding values, 
with the assumption of a residual variance set to 1 (or any fixed value). 
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Finally, the inference of the additive variance component, the systematic effects or the breeding 

values is performed for the liability or augmented variable.  
 

Example 2. Subjective data 
Interesting generalizations of the categorical data analysis under the threshold model are the cases 

when data comes from a subjective evaluation by several expert panelists (Varona and Hernández, 2006; 
Varona et al., 2009). One suitable approximation comes from the generalization of the threshold model to 
a multi-threshold model that defines a different set of thresholds for each panelist. 

p yω, t( ) = 1 ωij < ti1( )1 yij =1( )+1 ti1 <ωij < ti2( )1 yij = 2( )+....+1 ωij > tik( )1 yij = k +1( )( )
j=1

ni

∏
i=1

S

∏
 

where t is the vector of specific thresholds for each panelist. As before, the prior distribution of liability 
corresponds to the standard mixed model equations, and the variances components and the breeding

 values are referenced to this liability. 
 

Example 3. Ranking Data 
Another interesting application of the data augmentation is the Thurstonian model (Gianola and 

Simianer, 2006). The Thurstonian model allows to model ordered categorical response such as the one 
obtained in horse competitions. As an example, lets think in one competition with four competitors (A, 
B, C and D). If the results of the competition was that C is the first, A the second, D the third and B the 
last one, the Thurstonian model will assume a liability that ensure ordered liabilities as: 
ωC >ωA,ωC >ωD,ωC >ωB,ωA >ωD,ωA >ωB,ωD >ωC  

Later on, and as in the previous analysis, the prior distributions assume that the liability is 
regulated by systematic effects and breeding values. Moreover, this liability can be treated as a potential 
criteria of selection.  
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Example 4.  Production Functions. 

The biological cycle of livestock individual may be sometimes modeled using production 
functions, such as growth or lactation curves. Another interesting application of data augmentation is the 
use of a hierarchical Bayesian approach to model these production functions (Varona et al., 1997). This 
approach assumes a conditional probability for the available data along time given several parameters of 
the production function, which also can have some biological sense. As an example, Varona et al. (1998) 
applied the hierarchical Bayesian approach to the Wood lactation curve. Thus the Bayesian likelihood 
was defined as: 

p y a,k,c,σ t
2( ) = 1

2πσ t
2( )
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where a, k and c are the vector of the three parameters of the Wood function, that can be interpreted as 
the base milk production, ascent and descent to peek. Further, the prior distributions assume a 
multivariate mixed model for the augmented variables.

  
 

Example 5.  Food Intake. 
A similar approach using hierarchical Bayesian schemes can be used to model food intake data 

(Piles et al., 2006). There, in the first stage, food intake records (y) are modeled with a linear dependency 
on metabolic weight (w0.75) and the increase of weight (Δw). 
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2( ) = 1
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Later, and in a second a stage, a and b are modeled with the standard multivariate mixed models.
 

 
Example 6.  Residual Asymmetry 

The standard assumption of the Bayesian analysis of phenotypic data in animal breeding is that 
the residuals follow a Gaussian distribution. However, in some cases, it is possible to assume an 
asymmetric Gaussian distribution (Sahu et al., 2003), that describe the variation with two parameters, the 
variance (σ2) and the degree of asymmetry (λ). This degree of asymmetry can be understood as a 
measure of sensitivity to negative (or positive) environmental influences on phenotypes (Varona et al., 
2008). Thus, the likelihood of data can be expressed as: 

p y b,u,σ e
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where λi is defined as the individual degree of asymmetry and it is here the augmented phenotype. 

Thus, a priori, it can be explained by the standard mixed model analysis. 
 

λ =Xb+Zu+ e

 
 

Example 7. Binomial Models 
Another interesting approach of the hierarchical Bayesian schemes and the augmentation of 

phenotypes is its potential application to discrete phenotypes that follow alternative distributions. In 
recent paper, Varona et al. (2010) propose the use of Poisson, binomial and negative binomial models for 
pig mortality. As an example, the Bayesian likelihood for the binomial model is:  

p y θ, t( ) =
ti
yi

!

"

#
#

$
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&
&θi

yi

i=1

N

∏ 1−θi( )ti−yi  
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where θi is the individual probability of born alive. Further, a priori, a linear model for the logit 
transformation is assumed: 

logit θ( ) =Xb+Zu+ e  
 

Conclusions 
The power of the Bayesian analysis under a hierarchical Bayesian approach allows defining new 

variables that can be augmented and modeled. In some cases, these variables may have a biological sense 
and the development of linear models provide new breeding values that can be used to create new criteria 
of selection.  
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